

Fifth Semester MCA Degree Examination, June/July 2018 System Simulation & Modeling

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Explain the steps of simulation study with a neat diagram.
 b. Define system. Explain the components of a system for communication system.
 (10 Marks)
 (10 Marks)
- 2 a. Discuss the concept of discrete random variables and continuous random variables.

(06 Marks)

- b. A production process manufactures computer chips on the average of 2% non-conforming. Everyday a random sample of size 50 is taken from the process. If the sample contains more than 2 non-conforming chips, the process will be stopped. Determine the probability that the process is stopped by the sampling scheme. (07 Marks)
- c. A mainframe computer crashes in accordance with a Poisson process with a mean rate of one crash every 36 hours. Determine the probability that the next crash occur between 24 and 48 hours after the last crash.

 (07 Marks)
- 3 a. List the important considerations for generating Random numbers. (05 Marks)
 - b. Use the linear congruential method to generate a sequence of random numbers with the following data:

$$X_0 = 27$$
, $a = 17$, $c = 43$, $m = 100$ (07 Marks)

- c. Apply Kolmogorov-Smirnov test for the following random numbers 0.44, 0.81, 0.14, 0.05, 0.93 to test the uniformity with significance α of 0.05. Write the conclusion. Given critical value is 0.565.
- 4 a. Discuss the characteristics of Queuing system.

(10 Marks)

- b. Depict the snapshot of (M, N) inventory system table with the given data:
 - (i) M = 11 units, N = 5 days, Number of cycles = 3.
 - (ii) Random digit assignment for daily demand:

Demand: 0, 1, 2, 3, 4

Probability: 0.10, 0.25, 0.35, 0.21, 0.09

- (iii) Random digits for lead time 25, 0, 3, for cycle 1, cycle 2 and cycle 3 respectively. 8 units are expected to arrive in next 2 days.
- (iv) Random digits for demand

Cycle 1: 24, 35, 65, 81, 54

Cycle 2: 3, 87, 27, 73, 70

Cycle 3: 47, 45, 48, 17, 09

(v) Beginning inventory level: 3

Solve the following:

- Find the average ending units in inventory.
- Find the number of days shortage occurs.

(10 Marks)

5 a. Explain event scheduling algorithm with a system snapshort.

(10 Marks)

- b. Define the following:
 - (i) System state
- (ii) Event

(iii) Event notice

(iv) Imminent event

(v) process-interaction approach.

(10 Marks)

6 a. Explain the steps in modeling the input data.

(10 Marks)

b. Records pertaining to the monthly number of jobs-related injuries at an underground coalmine were being studied by fedral agency. The values for the past 100 months were follows:

Injuries per month	Frequency of occurrence
0	35
1	40
2	13
3	» » 6
4	4
5	1
6	1

Apply the chi-square test these data the hypothesis that the underlying distribution is Poisson for the significance value is 0.05; the critical value is 5.99 (10 Marks)

7 a. Explain iterative process of calibrating a model with neat diagram.

(08 Marks)

b. Explain Naylor and Finger approach for validating a model.

(12 Marks)

8 a. Write short notes on point estimation and interval estimation.

(10 Mark →

b. List and discuss the method of reducing point estimator bias in a steady state simulation.

(10 Mark

* * * *